Histochemical demonstration of endothelial superoxide and hydrogen peroxide generation in ischaemic and reoxygenated rat tissues.
نویسندگان
چکیده
OBJECTIVE The aims were to test and evaluate two novel and independent histochemical methods for detecting the initial postischaemic burst of superoxide and hydrogen peroxide in buffer perfused rat tissues during reflow after 60 min warm ischaemia. METHODS The first is a high manganese/diaminobenzidine technique, in which superoxide oxidises Mn2+ to Mn3+, which in turn oxidises diaminobenzidine to form amber coloured polymers, observable by light microscopy. The second is a high iron/diaminobenzidine technique, in which hydrogen peroxide oxidises diethylenetriaminepenta-acetate chelated Fe2+ to form intermediate species, which in turn oxidise diaminobenzidine similarly to Mn3+. Various isolated organs of the rat were rendered ischaemic for 60 min, and reperfused with oxygen or air equilibrated buffers containing diaminobenzidine and either Mn2+ or Fe2+. Tissues were fixed by perfusion with Trump's solution and processed for light microscopy. RESULTS Both manganese and iron methods consistently showed the appearance of reaction product on the luminal surfaces of arterial, capillary, and venular endothelial cells in lung, heart, and intestine of the rat during the first 2 to 3 min of reoxygenation after ischaemia. The histochemical reactions were nearly absent in non-manganese-treated and non-iron-treated controls. Superoxide dismutase strongly inhibited Mn2+/diaminobenzidine reaction product formation and catalase strongly inhibited Fe2+/diaminobenzidine reaction product formation, when tested in specially perfused lung preparations in which these specific antioxidant enzymes were concentrated. CONCLUSIONS These histochemical techniques provide direct, visual evidence that a burst of reactive oxygen species is generated in postischaemic rat tissues. The Mn2+/diaminobenzidine and Fe2+/diaminobenzidine techniques permit investigation of the endothelium derived reactive oxygen by simple laboratory procedures available to almost any investigator at low marginal cost. The endothelial oxidants so revealed may be of pathophysiological significance in a variety of cardiovascular disorders.
منابع مشابه
Mas-Mediated Antioxidant Effects Restore the Functionality of Angiotensin Converting Enzyme 2-Angiotensin-(1–7)-Mas Axis in Diabetic Rat Carotid
We hypothesized that endothelial AT1-activated NAD(P)H oxidase-driven generation of reactive oxygen species during type I-diabetes impairs carotid ACE2-angiotensin-(1-7)-Mas axis functionality, which accounts for the impaired carotid flow in diabetic rats. We also hypothesized that angiotensin-(1-7) chronic treatment of diabetic rats restores carotid ACE2-angiotensin-(1-7)-Mas axis functionalit...
متن کاملSome problems on the leuco-dye-peroxide reaction. The 31st report of histochemical study of peroxidase.
In general, for the histochemical demonstration of peroxidase , b enzidine, naphthol, and leuco-dyes are utilized in the prosence of hydrogen peroxide. Among these , the technical modifications of the benzidine-peroxide method are the most numerous . Alpha-naphthol has been used less often than benzidine . Application of the leucodye method for animal tissues is remarkably limited and this meth...
متن کاملChemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation.
Lucigenin-amplified chemiluminescence has frequently been used to assess the formation of superoxide in vascular tissues. However, the ability of lucigenin to undergo redox cycling in purified enzyme-substrate mixtures has raised questions concerning the use of lucigenin as an appropriate probe for the measurement of superoxide production. Addition of lucigenin to reaction mixtures of xanthine ...
متن کاملComplement activation following reoxygenation of hypoxic human endothelial cells: role of intracellular reactive oxygen species, NF-kappaB and new protein synthesis.
Complement plays an important role in ischemia-reperfusion injury. We recently demonstrated that reoxygenation of hypoxic human umbilical vein endothelial cells (HUVECs) activated the classical complement pathway and augmented iC3b deposition. In the present study, we investigated the potential role of oxygen-derived free radicals, NF-kappaB and new protein synthesis in this model. HUVECs subje...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 26 6 شماره
صفحات -
تاریخ انتشار 1992